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Wave p r o c e s s e s  in mul t icomponent  media  (liquid and w a t e r - s a t u r a t e d  soi l  with bubbles of gas,  suspen-  
s ions,  etc.) have been studied in [1-20] and other  invest igat ions.  

In [1] it was  a s sumed  that the space  is f i l led with a number  of continuous media ,  each  of which c o r r e -  
sponds to a component  of the medium.  The investigation was concerned with in te rpenet ra t ing  motions of these  
media  (in the genera l  c a se  each  moves  with its own ve loc i ty  and p r e s s u r e ) .  In the model of [2] the mul t i -  
component  medium was r e g a r d e d  as a homogeneous continuous med ium with a c o m p r e s s i b i l i t y  equation taking 
account of the compress ib i l i t y  and the p r e s e n c e  of components  that we re  in an equi l ibr ium state .  In [3] the 
mul t icomponent  med ium was r e g a r d e d  as homogeneous,  and the compre s s ib i l i t y  of the gaseous component  was 
de te rmined  by t Iugoniot ' s  adiabat ic  curve.  The re f lec t ion  of a plane wave f r o m  a solid par t i t ion  for  var ious  
angles of incidence was invest igated in [4] on the bas i s  of [2], using e lec t ronic  compute r s .  The p rob l em of the 
propagat ion  of a wave produced by  the explosion of the spher ica l  charge  of a b las t  wave,  using the model  of [2] 
as  a ba s i s ,  was solved by means  of e lec t ronic  compute r s  in [5]. The authors  o f  [6] p roposed  a model  of a 
homogeneous med ium analogous to that of [2] and obtained solutions of p rob l ems  concerning the pa s sag e  of a 
wave  through a l ayer  of wa te r  with gas bubbles and the ref lec t ion  of the wave f r o m  a f ixed boundary.  The 
spec ia l  c h a r a c t e r i s t i c s  of the s t r u c t u r e  of waves  in wa te r  with gas bubbles  and the effect  of v i scos i ty  d i s s ipa -  
tion r e l a t ed  to the motion of the bubbles with r e s p e c t  to the liquid were  cons idered  in [7]. In, the model  of [8] 
the pulsat ion of the bubbles  was a s s u m e d  to confo rm to L a m b ' s  equation, i .e. ,  the lack of equi l ibr ium between 
the phases  was taken into considera t ion .  The ca se  of s t rong  shock waves ,  on the bas i s  of [8], was cons idered  
in [9]. In [10, 11] it was shown that  in a liquid with gas bubbles ,  for  specif ic  re la t ionsh ips  between the v iscos i ty ,  
the load, and the bubble rad ius ,  t h e r e  is f o rmed  a wave with an osc i l l a to r  s t ruc tu re .  In [12] the s t r u c t u r e  of a 
wave was invest igated on the ba s i s  of the model  of [13], with osci l la t ions taken into considera t ion.  Equations 
for  the mechanics  of a two-ve loc i ty  t w o - t e m p e r a t u r e  med ium with two p r e s s u r e s  w e r e  p roposed  in [14]. In [15], 
on the bas i s  of [14], the s t r u c t u r e  of a s t a t ionary  wave was invest igated with t h e r m a l  conductivi ty taken into ac -  
count. It was  shown that  the na tu re  of the pulsat ion depends substant ia l ly  on the heat  exchange between the 
phases .  It was noted that  the exper imen t s  of [11] should be  analyzed with the t ime-dependen t  change of s t r u c -  
tu re  taken into account. In the expe r imen t s  of [16] it was es tabl i shed that an inc rease  in the intensi ty of the 
wave leads to an i nc rea se  in the f requency  and ampli tude of the osci l la t ions  on the f ront ,  while an inc rease  in 
the bubble d i ame te r  leads to a d e c r e a s e  of the f requency  and an inc rease  of the ampli tude.  Weak waves  w e r e  
c o n s i d e r e d . . T h e  authors  of [17] obtained n u m e r i c a l  solutions making it poss ib le  to de te rmine  the ampli tude 
osc i l la t ions  on the wave f ront ,  the ve loc i ty  of propagat ion  of the wave,  and the t ime  r equ i r ed  for  es tabl ishing a 
s t a t iona ry  s t ruc tu re .  Waves i n  w a t e r - s a t u r a t e d  rocks  w e r e  cons idered  in [18]. The authors  of [18] obtained an 
equation desc r ib ing  weak longitudinal waves  with iner t ia l  re laxa t ion  taken into account.  The effect  of the tension 
su r f ace  was invest igated i n  [19]. In [20] the model  of [2] was improved  by  the introduction of nonl inear  d i ag rams  
for  the dynamic and s ta t ic  c o m p r e s s i o n  of the mul t icomponent  medium,  making it poss ib le  to introduce bulk 
v iscos i ty .  The effect  of v i scos i ty  was cons ide red  in a somewhat  different  manner  in [21]. 

Moscow. T rans l a t ed  f r o m  Zhurnal  Prikladnoi  Mekh,niki  [ Tekhnicheskoi  Fiziki ,  No. 2, pp. 121-130, 
March-Apr i l ,  1977. Original  a r t i c l e  submit ted  Apri l  22, 1976. 

This material is protected by copyright registered in the name o f  Plenum Publishing Corporation, 22 7 West 17th Street, New York, N.Y. 10011. No part 
o f  this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
microfilming, recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $7.50. 

241 



In what fol lows,  us ing [20] as a bas i s ,  we obtain a solution of the p r o b l e m  of the propagat ion  of a plane 
wave produced by a shock- type  s ta t ionary  load in a mul t icomponent  medium.  The solution was c a r r i e d  out on 
an e lec t ronic  compute r  by  the method of c h a r a c t e r i s t i c s  applied to v i s c o s i t y - f r e e  media  [5, 20, 22] and also by  
an approx imnte  analyt ic  method. 

1. Model of the  Medium, Method of Numer i ca l  Solution. We shal l  use  the  model  of [20]. At the initial 
(a tmospheric)  p r e s s u r e  a l ,  a2, and a 3 a r e  the r e l a t i ve  f rac t ions  by volume of the gaseous ,  liquid, and sol id 
components ;  Vl0 , V20 , and V~ a r e  the spec i f ic  vo lumes ;  Pl0, P20, and P30 a r e  the densi t ies ;  cl0 , c20 , and c30rep- 
r e s e n t  the speed of sound in each; P0 is the densi ty  of the medium;  V 0 is the speci f ic  volume 

Po = llYo = a ,p ,o  + (z2p~ + a393o,: a ,  + cz~ + ~a = t .  

At p r e s s u r e  p the volume,  the density,  and the speed  of sound a r e  Vl, V~, V 3, p 1, pg, P3, cI,  c2, e3, r e -  
spec t ive ly ,  the densi ty  of the med ium is p ,  and its spec i f ic  volume is V. 

We a s s u m e  that in the f r e e  s t a te  the components  axe c o m p r e s s e d  accord ing  to the equations 

P = Po (Px/91o) v' gaseous': 

_ ,] (1.1) 'P = P * +  7~ L\P2o/ liquid: 

P = Po-t- ""~--a L\Pso/ 

The f i r s t  equation in (1.1) r educes  to the f o r m  of T a i t ' s  equation. The re fo re ,  for  all  the components  

2 "~i ] PlocfO (1.2) -~P'~176 - - i j  i = 1 , 2 , 3 ,  P o =  ~,, P Pc- -  "h LkV~/ 

The gaseous  component  is p r e s en t  in the f o r m  of f ine bubbles.  As the wave p a s s e s  through, the c o m p r e s s i o n  of 
the gas  bubbles ,  which axe isola ted f r o m  one another  by  the other  components ,  t akes  p lace  not instantaneously,  
but ove r  a f inite t ime ,  while  the o ther  components  move in to f i l l  the volume or ig inal ly  occupied by the bubbles.  
T h e r e f o r e ,  in acco rdance  with [20], we a s s u m e  that  ins tead of (1.2), the equation governing the c o m p r e s s i o n  of 
the gas in the med ium is 

P = Po + 7x [\Vxo/ 

where  ~ is the coeff icient  of bulk v i s cos i t y  of the medium.  

where  

(1.3) 

The other  components  a r e  c o m p r e s s e d  in accordance  with the s a m e  equations as in the f r e e  state.  

The equation of c o m p r e s s i b i l i t y  of a t h r ee -componen t  medium,  under these  assumpt ions ,  takes  the f o r m  

v'~ = cp (p) p - -  ~ ,  (p, V), (1.4) 

3 
[V~ (p--p0) + l]-('+v~)/v~; 

~ <,, V ) :  p "~176 ~O-'i~'~'ì p-p')i:2 [. PioC'---~iO -t- ~- ]--t/?i} -Vi 

As ~] -* ~ and 13-* -% we obtain  f r o m  (1.4) the equation of dynamic c o m p r e s s i b i l i t y  of the  medium:  

dV -il~, ~ ~P" + i (p) = pc 
3 

V--~ = a l  + Z r "'i (P -- p0) 
~=2 OioC20 

As V - * 0  and 13-*0, we obtain the equation of s ta t ic  compre s s ib i l i t y  of the medium:  

= [ o~o~o + ~ " 

(1.5) 

(1.6) 
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The las t  equation coincides  with the equation of c o m p r e s s i b i l i t y  of the model  of [2], not taking account of 
bulk viscosi ty .  The model of [2] co r r e sponds  to the l imit ing equi l ibr ium s ta te  of the medium,  which c o r r e -  
sponds to s ta t ic  c o m p r e s s i o n  in the model  of [20]. 

We make  use  of Lag range ' s  va r i ab les :  r is the space  coordinate ,  t is the t ime.  

We find the p a r a m e t e r s  of the wave produced by a load specif ied at the initial c r o s s  sect ion r =0 of the 
ha l f - space  (or a tube fil led with the medium),  increas ing  at t = 0  by a jump to PS and re ta in ing  this value t h e r e -  
af ter .  

The fundamental  equations of m o t i o n t a k e  the f o r m  

Ou OV Ou I Op _ O. 
Or - p o ~ / - = 0 ,  -~ -+  p-TOr-- 

The s y s t e m  (1.7), c los ing (1.4), is of hyperbol ic  type. The c h a r a c t e r i s t i c  r e la t ions  a r e  

1/2 a~r (p, V) dt  for r = • (--  poop (p))--l/2; dp -4- du  = ~1r (P) 

d p - -  Po d V  : a~r V) dt  for r : 0 .  
(p) 

(1.7) 

(1.8) 

The c h a r a c t e r i s t i c s  of the f i r s t  and second f ami l i e s  a r e  nonl inear .  

The boundary conditions at the initial c r o s s  sect ion r =0 and at the jump (the shock front) ,  where  the c o m -  
p r e s s i o n  takes  place  accord ing  to the dynamic d i a g r a m  and t he r e  is no v i scos i ty ,  have the f o r m  

P = P o  for t ~ 0 ,  p = p s  :for t / > 0 ,  

P - -  Po = Po uD,  (P--po)D = p u .  

The solution was c a r r i e d  out on the BI~SM-6 e lec t ronic  compute r  for  th ree  load values ps /p0=5000,  1000, 
and 50, and for  s ix  media ,  whose c h a r a c t e r i s t i c s  a r e  given in Table  1 [1-3) w a t e r - s a t u r a t e d  soil ;  4-6) water  
with a i r  bubblest .  

In the calculat ions we a s s um ed  p10=1.29, p20=103, p30=2.65 �9 103 k g / m  3, c10=330, c20=1500 , C30=5000 m /  
sec ,  Ti--1.4, T2=7, T3=4. 

In the p rob l em  under considera t ion ,  in the r - t  plane we have four types  of points,  at each of which the 
p a r a m e t e r s  a r e  ca lcula ted  according  to the i r  appropr ia t e  a lgor i thms :  at the shock f ront ,  in reg ions  of i n c r e a s -  
ing and constant  p r e s s u r e ,  and at the initial c r o s s  sect ion.  

We cons ider  the sequence  of calculat ion of the p a r a m e t e r s  in the region of inc reas ing  p r e s s u r e .  Suppose 
that points A, B, D l ie  in the s a m e  t ime  l ayer  and that the p a r a m e t e r s  at these  points a r e  known, r(A)< r(B) < 
r(D). We de te rmine  the p a r a m e t e r s  at point C, which l ies  in the next  t ime  l ayer  and has the s a m e  space  co-  
ordinate  as point B. The t ime  s tep  At va r i e s  f r o m  layer  to layer .  F r o m  point C on the Preceding t ime  layer  
we draw the c h a r a c t e r i s t i c s  of al l  t h ree  fami l ies .  The i r  in tersec t ions  with the cu rve  AD will  be  denoted by L, 
B, M. The coordina tes  of points L and M a r e  found f r o m  the equations 

rL = rc - [ "  t30qD (p)1~-~/2 At, r~  = rc + [ -  ~q~ ( p ) l ~  2 At. 

The subsc r ip t  CL indicates that  the quanti t ies  in b r acke t s  a r e  taken as the a v e r a g e  of the i r  values  at 
points C and L. In the f i r s t  ca lcu la t ion  the p a r a m e t e r s  at point C a r e  taken to be  the s a m e  as  at point B. Using 
interpolat ion with r e s p e c t  to the values  of the p a r a m e t e r s  at points A, B, and D, we ca lcu la te  the values  of p, V,  
and u at points L and M. After  th is ,  using the values  we have found, we find m o r e  exact  values  for  p, u, and V 
at point C: 

(p3]l:2 a, [~ (p, ~')'~ A t  Pc --  PL = - -  [-- t~o/q~, , cL (uc - -  uL) - -  - ~  \ ~ ] c L  ' 

P0 ]~/2 ~-i [r (p, V)~ At, 
Pc P'~ = [ - -  r (P)JCM (uc --- UM) - -  n k r (P) ]CL 

_ 9o _ ~ [ r  At  

The equations c o r r e s p o n d  to the r e l a t ions  sa t i s f ied  along the th ree  c h a r a c t e r i s t i c s ,  The calcula t ion is 
r epea t ed  a p r e s c r i b e d  number  of t imes .  The calcula t ion of the p a r a m e t e r s  at o ther  types  of points is c a r r i e d  
out in the s a m e  way. 
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2. Resul t s  of the Numer ica l  Solution. F igure  1 shows the d i ag rams  of the dynamic c o m p r e s s i o n  V~3(p 0) 
and the s ta t ic  c o m p r e s s i o n  V~(p ~ of med ium 1 (see Table  1), cons t ruc ted  in accordance  with Eqs. (1.5), (1.6). 
Here  and he rea f t e r ,  p~  , V~ . For  sma l l  p r e s s u r e s ,  when the c o m p r e s s i b i l i t y  of the medium is de-  
t e rmined  by the c o m p r e s s i b i l i t y  of the a i r ,  the curves  differ  f r o m  each other  considerably .  Start ing with p r e s -  
su res  of the o rde r  of tens of a tmosPheres  , the a i r  is c o m p r e s s e d  to a s ta te  c lose  to the l imit ing s t a te  and the 
cu rves  become  s i m i l a r  to each other ;  the V~(p ~ d i ag ram di f fe rs  f rom the V~ ~ d i ag ram by a 1. 

The calculat ions show that at t ime  t = 0, when the load is applied, the shock front  begins to advance f r o m  
the c r o s s  sect ion r =0. The initial  p r e s s u r e  at the shock front  is p~=5"  103, and its veloci ty  is Df= [ ( p ~ , l ) P 0 /  
p0(1-V~3)] 1/2. The value of the jump at the shock front  and its veloci ty  dec r ea se  with d is tance .  Behind the 
jump the re  follows a region of gradual  i nc rease  of p r e s s u r e  to p~. 

As t ime  i nc r ea se s ,  the s ta te  at the shock f ront  along the V~3(p ~ cu rve  pa s se s  f rom.poin t  D to point M, and 
at the initial c r o s s  sect ion f r o m  point D to point S. In the reg ion  of increas ing  p r e s s u r e  the s ta te  is de te rmined  
by cu rves  1 - ~ .  The inc reas ing  num ber s  co r r e spond  to increas ing  t ime.  Curve 2 r e l a t e s  to the instant of t ime  
at which the s ta te  at the initial c r o s s  sect ion r e a c h e s  the s t a t i c - c o m p r e s s i o n  d iagram.  F r o m  the initial c r o s s  
sect ion the f ront  of the region of constant  p r e s s u r e  p~ begins to p ropaga te  i tself  with veloci ty  DS < Df. With 
inc reas ing  t ime ,  Df d e c r e a s e s  while D S f i r s t  i nc reases  and then d e c r e a s e s  (see Fig. 1). As t --~ ~o, the d i ag ram 
of s ta te  in the region of increas ing  p r e s s u r e  approaches  the s t ra ight  line OMS, the p r e s s u r e  at the shock f ront  
approaches  P~I' and the veloci ty  of the shock f ront  and the f ront  of the region of constant  p r e s s u r e  and the 
s ta tes  between them approaches  DM (the flow becomes  s ta t ionary)  

D., = [(p~ - -  t)Po/Po ( i  - -  V~ '~. 

We introduce the d imens ion less  dis tance 

x = A r / 3 T I ;  (2.1) 

i - -a~ - - - - -~+~:- -T2 \ J (, P~oC~o P3o%o ] ' (2.2) 

(A is the acoust ic  r e s i s t a n c e  of the med ium surrounding  the gas bubbles).  The values  of A calculated acco rd -  
hag to (2.2) a r e  shown in Table  2. Neglect ing the m a s s  of the a i r  in compar i son  with the m a s s  of the other  c o m -  
ponents,  we obtain for  sma l l  values  of a i  

. 

k P~oc20 

Figure  2 shows the dis t r ibut ion of the p r e s s u r e  for  med ium 1 when p~=5000. The var ia t ion  of p~ is 
near ly  l inear .  The length of the region of increas ing  p r e s s u r e  is ~ : = 6 . 8 ,  p ~ p ~ / 2 .  Assuming,  in accordance  
with [20], that  7? =1.09- 103 k g / m .  sec,  we obtain the d imens ional  length of the region of increas ing  p r e s s u r e ,  
Ar = 6 . 8 . 1 0  -3 m, and the t ime  of the inc rease  at a fixed point of the medium,  At=3.5 �9 10 -6 sec .  The t ime  of the 
inc rease  is quite short .  

The case  we have cons idered ,  when the jump at the shock f ront  d e c r e a s e s  to a f inite value,  a r i s e s  onIy at . 
a f a i r ly  l a rge  load, p~> PS" If the s t ra igh t  line OS (see Fig. 1) does not in te r sec t  the dynamic d i a g r a m  at even . 
one point, then the value of the jump at the shock f ront  approaches  ze ro  in the l imit ing case ;  PS is found f r o m  
the condition 

* 2 * ~" 0 * l = - ooo(V - 1), = (2 .3 )  

+ , COpo (2.4) 

The values  of p* S calcula ted in accordance  with (2.3), (2.4) a r e  shown in Table  2. 

As the percen tage  of the gaseous component  i nc r ea se s ,  so does PS" In a w a t e r - a i r  medium PS is less  
than in a w a t e r - s a t u r a t e d  soi l  for  the s a m e  value of a 1. The ve loc i ty  of the shock f ront  approaches  the veloci ty  
of sound c 0. For  the f i r s t  med ium c o = 1640 m / s e c .  

The var ia t ion  of the p r e s s u r e  at the shock f ront  as a function of the dis tance in w a t e r - s a t u r a t e d  soi ls  for  . 
p~ = 1000 < PS is shown in Fig. 3, where  the number ing  of the cu rves  c o r r e s p o n d s  to the number ing  of the  media  
in Table  1. 
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Curve  L defines the dis t r ibut ion of p r e s s u r e  in med ium 1 when the shock f ront  r e a c h e s  the point x =303. 
The p r e s s u r e  at the shock f ron t  is p r ac t i ca l l y  equal to zero .  The length of the reg ion  of inc reas ing  p r e s s u r e  is 
Ax=83,  F o r  ~ =1.09-  103 k g / m .  sec  we obtain r =30 . 3 . 10  -2 m,  Ar =8.3" 10 -2 m. The t i m e  of i nc r ea se  of the 
p r e s s u r e  to the m ax i m um ,  At = 5 . 1 0  -5 sec ,  is s t i l l  smal l .  As p~ d e c r e a s e s ,  the length of the region of i n c r e a s -  
ing p r e s s u r e  inc reases .  As the pe rcen tage  of the gaseous  component  i n c r e a s e s ,  so does the intensi ty of ex-  
t inct ion at the shock front .  

F igu re  4 shows the d i a g r a m s  for  the dynamic c o m p r e s s i o n  V~)(p ~ and s ta t ic  c o m p r e s s i o n  V~(p ~ of 
wa t e r  with gas  bubbles  (medium 4); cu rves  1-~o define the var ia t ion  of the s ta te  in the pa r t i c l e s  of the medium 
as the p r e s s u r e  i n c r e a s e s .  The  number ing  i n c r e a s e s  with the d is tance  of the pa r t i c l e s  f r o m  the initial  c r o s s  
section.  The cu rves  approach  the s t ra igh t  l ine (kS. 

F igure  5 shows how p r e s s u r e  at the shock f ront  v a r i e s  with the d is tance  in a wa te r  - a i r  med ium for  p~= 
50. The number ing  of the  cu rves  co r r e sponds  to the number ing  of the  media  in Tab le  1. The p r e s s u r e  at the 
shock f ront  approaches  zero .  Curve  L defines the dis t r ibut ion of p r e s s u r e  in med ium 4 when the shock f ront  
r e a c h e s  x =398. 

3. Approx imate  Values of the Coefficient of Viscosi ty .  The solut ions of wave p rob l ems  [20] have shown 
that  the bulk v i s c o s i t y  leads to  a b lu r r ing  of the shock wave. The values of the coeff icient  of bulk v i scos i ty  ~) 
mus t  be  de te rmined  exper imenta l ly .  Let us find the approx ima te  values  of 7/ f r o m  an analys is  of the c o m p r e s -  
s ion of the bubbles ,  taking the equations of c o m p r e s s i b i l i t y  of the solid and liquid components  to be  l inear .  Sup- 
pose  that  all  the bubbles  a r e  spher i ca l  in shape  and have the s a m e  rad ius  r 0. The initial volume of a bubble is 

* 3 V 0 =47rr0/3. F o r  c o m p r e s s i o n  at the t ime  the load is applied,  

V *  = - -  4 ~ r ~  u ,  

where  u is the ve loc i ty  of the med ium surrounding the bubbles.  The var ia t ion  of the volume of all  the bubbles 
in a unit volume of the med ium is given by 

~:~ ~, ~ r  2u 3~ 

= i f -  Vo ". 

F r o m  (1.3) it fol lows that  at this  instant  of t ime  

P - -  P o  = - - ~ V l / V l o  = 3 n u / r o .  

If the solid and liquid components  a r e  l i n e a r - e l a s t i c  media ,  i .e . ,  T2 = T 3 = - 1 ,  then 

(3.1) 

a.~ ~-,/2 (3.2) 
P~oc30 } i - -  (z I \ p 2 0 c 2 0  

F r o m  a c o m p a r i s o n  of (3.1), (8.2) we find the coeff icient  of v i scos i ty  

n = A r o / 3 .  (3.3) 

The values of t7 for  r0=10  -8 m,  ca lcula ted  accord ing  to (3.3), a r e  shown in Table  2. Fo r  the types  of 
var ia t ion  of a 1 we have cons idered ,  the values  of A and ~} v a r y  only slightly.  

In w a t e r - s a t u r a t e d  soi l  A and ~ a r e  higher tbon in a w a t e r -  a i r  medium for  the s a m e  a i r  content and the 

s a m e  bubble radi i .  

Var ia t ion of the gaseous -componen t  leads to a va r ia t ion  in the stat ic  and dynamic d i a g r a m s ,  while v a r i a -  
t ion of the bubble rad ius  ehunges the coeff icient  of v i scos i ty  of the medium.  

F r o m  (2.1), (3.3) it follows that 

x = r/ro. 

In Fig. 6, curves 1-4 define the pressure at the shock front for p~=50, 500, 1000, and 3000, respectively. 
They were  cons t ruc ted  for  w a t e r - s a t u r a t e d  soil ,  but they  p rac t i ca l ly  coincide with the curves  for  wa te r  with, 
a i r  bubbles.  The di f ference  between the cu rves  is no m o r e  than 10%. F r o m  this it follows that when p~ < PS' we 
can a s s u m e  as a f i r s t  approximat ion  that  

pO/pw ~. f (ro51/ro). 
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4. Analytic Solutions. We cons ider  the ca se  p~ < p~. We approx imate  the d y n a m i c - c o m p r e s s i o n  d i ag ram 
by the s t ra ight  line OD (see Fig. 4). In the l inear iza t ion  the c h a r a c t e r i s t i c s  a r e  s t ra igh t  l ines ,  the cu rve  of the 
f ront  coincides with the c h a r a c t e r i s t i c  of the f i r s t  fami ly ,  and the p a r a m e t e r s  at the shock f ront  co r respond  to 
the f i r s t  equation in (1.8). The function r (p, V) can be r e p r e s e n t e d  in the f o r m  

, (p, V) = p - - p o [ i  - -  (V ~ - -  V~ -~' .  (4.1) 

As V~ and V ~ r e spec t ive ly ,  we have r ~ p  - P0 and r ~ 0 .  On the d y n a m i c - c o m p r e s s i o n  d iagram,  
and consequently at the jump as well ,  we have ~ =p - p0=p0(P~ In accordance  with (1.5), for  the l i nea r i za -  
t ion we obtain 

ep (p) = podV/dp ,  ep (p) = (2 - -  V~ (2 - -  ps ~ = c0nst. 

The re la t ion  at the jump is 

Hence the f i r s t  equation in (1.8) takes  the f o r m  

dpO/ (pO _ t ) =  - -  cqp  o ( p O _  1)/~1(1 - -  V ~  dt.  

In tegra t ing  for  the initial condition p~=p~ we obtain the var ia t ion  of the p r e s s u r e  at the shock f ront  as a 
function of t ime :  

ln[(p ~ - -  t) /(p ~ - -  2)1 = - -  ~lP0 ( P ~ -  2)t,,2n 0 - -  V~ 

The equation of motion of the shock f ront  is 

= [ p o ( p ~  ~ - v )po] t .  

The var ia t ion  of the p r e s s u r e  at the shock frolxt as a function of dis tance is given by 

ln[(p ~ - -  l)(pO _ t)]  = -- o~l [(p ~ --  1) P0Oo] 1/2 r /2~ l ( t  - -  V ~  1/2. (4.2) 

In Fig. 3 and Fig. 5 the indicated points co r r e spond  to the p r e s s u r e  at the shock f ront  as ca lcula ted  ac -  
cording to (4.2). The analytic solution for  the l inear iza t ion  of the d y n a m i c - c o m p r e s s i o n  d i a g r a m  is c lose  to 
the solution obtained by e lec t ronic  compute r  without l inear iza t ion  (curves 1-6). The r e a s o n  for  this  is that the 
d y n a m i c - c o m p r e s s i o n  d i ag ram  devia tes  l i t t le  f r o m  a l inear  function (see Figs.  1 and 4) in the media  under con-  
s ideration.  

0 * We cons ider  the var ia t ion  of the p r e s s u r e  at a f ixed point of the med ium when PS < PS" Fo r  i: =0 the th i rd  
equation in (1.8) is sa t is f ied.  After  the jump at the shock f ront  up to p~ the s ta te  at a pa r t i c l e  changes acco rd -  
ing to cu rves  1-~o (see Fig. 4). For  l inear iza t ion  of these  cu rves  and of the d y n a m i c - c o m p r e s s i o n  d i ag ram we 
obtain 

_ r ~  1 -  

dp (pO p~)po9 o, (p(p) . p0(p0s__t ) ,  (4.3) 

where  p~ is the p r e s s u r e  at the jump; 0 0 0 0 _ 0 Vs=Vs(Ps) ;  V D -  VD(P~). 

Between the dynamic and s ta t ic  d i a g r a m s ,  except  for  a sma l l  reg ion  nea r  the s ta t ic  cu rve ,  we can ap-  
p rox ima te ly  a s s u m e  [see (4.1)] the condition $ =P-P0-  F r o m  this ,  taking account of (4.3), we obtain the th i rd  
equation in (1.8) in the f o r m  

dp~  (p ~ - -  2) = a i  ( P~ - -  P~ ) Po/~I ( V~ - -  V ~  dr.  

Integrat ing,  we find the va r ia t ion  of the p r e s s u r e  at a fixed point of the med ium (a par t ic le)  behind the 
shock f ront  

In [(p0 _ 2) (p~ - -  t ) ]  = a i  (p~ - -  p~)  po /n (V~  - -  V ~ ) (t - -  is) (4.4) 

(if is the t i m e  when the shock f ront  a r r i v e s  a t  the point under considerat ion) .  

The t i m e  during which the p r e s s u r e  i nc rea se s  to p~ is 

At = In [(pO _ t)/(p~ - -  1)] ~ ( v ~ -  v ~  (p~ - p~).  

0 0 For  values  of p~ that  a r e  not too smal l ,  we may  a s s u m e  a l = V s - V  D. 
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In Fig. 7, curve f corresponds to the variation of pressure at the shock front with time in water with gas 
bubbles when ~1=0.01 and p~--50. Curves 1-6 show the variation of pressure at fixed points of the medium at 
distances x=25, 50, 100, 150, 200, and 400, respectively. The solid curves are obtained by computer calcula- 
tions, while the dashed curves are obtained by (4.4). The differences between them are slight. 

The analytic expressions obtained can be used for the approximate determination of the pressure at the 
shock front and its variation during the time the pressure increases to'p~, as well as for determining the time 
of pressure increase. 
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