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PLANE WAVES IN NONLINEAR VISCOUS MULTICOMPONENT
MEDIA

G. M. Lyakhov and V. N. Okhitin UDC 624.131+532.529

Wave processes in multicomponent media (liquid and water-saturated soil with bubbles of gas, suspen-
sions, etc.) have been studied in [1-20] and other investigations.

In [1] it was assumed that the space is filled with a number of continuous media, each of which corre-
sponds to a component of the medium. The investigation was concerned with interpenetrating motions of these
media (in the general case each moves with its own velocity and pressure). In the model of [2] the multi-
component medium was regarded as a homogeneous continuous medium with a compressibility equation taking
account of the compressibility and the presence of components that were in an equilibrium state. In [3] the
multicomponent medium was regarded as homogeneous, and the compressibility of the gaseous component was -
determined by Hugoniot's adiabatic curve. The reflection of a plane wave from a solid partition for various
angles of incidence was investigated in [4] on the basis of [2], using electronic computers. The problem of the
propagation of a wave produced by the explosion of the spherical charge of a blast wave, using the model of [2]
as a basis, was solved by means of electronic computers in [5]. The authors of [6] proposed a model of a
homogeneous medium analogous to that of [2] and obtained solutions of problems concerning the passage of a
wave through a layer of water with gas bubbles and the reflection of the wave from a fixed boundary. The
special characteristics of the structure of waves in water with gas bubbles and the effect of viscosity dissipa-
tion related to the motion of the bubbles with respect to the liguid were considered in [7]. I the model of [8]
the pulsation of the bubbles was assumed to conform to Lamb's equation, i.e., the lack of equilibrium between
the phases was taken into consideration. The case of strong shock waves, on the basis of [8], was considered
in [9]. B [10, 11] it was shown that in a liquid with gas bubbles, for specific relationships between the viscosity,
the load, and the bubble radius, there is formed a wave with an oscillator structure. In [12] the structure of a
wave was investigated on the basis of the model of [13], with oscillations taken into consideration. Equations
for the mechanics of a two-velocity two-temperature medium with two pressures were proposed in [14]. Tn [15],
on the basis of [14], the structure of a stationary wave was investigated with thermal conductivity taken into ac-
count. T was shown that the nature of the pulsation depends substantially on the heat exchange between the
phases. It was noted that the experiments of [11] should be analyzed with the time~dependent change of struc-
ture taken into account. In the experiments of [16] it was established that an increase in the intensity of the
wave leads to an increase in the frequency and amplitude of the oscillations on the front, while an increase in
the bubble diameter leads to a decrease of the frequency and an increase of the amplitude. Weak waves were
considered. ‘The authors of [17] obtained numerical solutions making it possible to determine the amplitude
oscillations on the wave front, the velocity of propagation of the wave, and the time required for establishing a
stationary structure. Waves -in water-saturated rocks were considered in [18]. The authors of [18] obtained an
equation describing weak longitudinal waves with inertial relaxation taken into account. The effect of the tension
surface was investigated in [19]. In [20] the model of [2] was improved by the introduction of nonlinear diagrams
for the dynamic and static compression of the multicomponent medium, making it possible to introduce bulk
viscosity. The effect of viscosity was considered in a somewhat different manner in [21].
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In what follows, using [20] as a basis, we obtain a solution of the problem of the propagation of a plane
wave produced by a shock-type stationary load in a multicomponent medium. The solution was carried out on
an electronic computer by the method of characteristics applied to viscosity-free media {5, 20, 22] and also by
an approximate analytic method.

1. Model of the Medium, Method of Numerical Solution, We shall use the model of [20]. At the initial
(atmospheric) pressure a4, ¢y, and oz are the relative fractions by volume of the gaseous, liquid, and solid
components; Vi, Vg, and Vg, are the specific volumes; p 44, pgg, and pgg are the densities; ¢y, cqy, and cyyrep-
resent the speed of sound in each; p, is the density of the medium; V, is the specific volume

po = UV = 04p19 + Xy + OyPg0y Gq + O + oy = L.

At pressure p the volume, the density, and the speed of sound are V,, V,, Vg, py, p3. p3, €y, Cg, C3, TE-
spectively, the density of the medium is p, and its specific volume is V.

We assume that in the free state the components are compressed according to the equations

P = Py (P1/014)™ gaseous:

= Pe+ Purty [(—p’ )w — 1] liquid; .1
- P=Pe- Va2 Pag '
—_, 0306:23() [( Ps )'Vs ] .
D=py-+ a7l | P {1 solid;

The first equation in (1.1) reduces to the form of Tait's equation. Therefore, for all the components

: 2 ? 2
— p, + Putio ‘h) i — Py 1.2)
P=Pot+ [(Vi Ihi=123 py=—=.

The gaseous component is present in the form of fine bubbles. As the wave passes through, the compression of
the gas bubbles, which are isolated from one another by the other components, takes place not instantaneously,
but over a finite time, while the other components move in to fill the volume originally occupied by the bubbles.
Therefore, in accordance with [20], we assume that instead of (1.2), the equation governing the compression of
the gas in the medium is

9 .
A
P=Pot 1 1\Vie Y=n Vi’ ‘

where 1 is the coefficient of bulk viscosity of the medium.
The other components are compressed in accordance with the same equations as in the free state.

The equation of compressibility of a three-component medium, under these assumptions, takes the form

T =0 @ P — 2 V), (1.4

where
3

a; [7; (p=po) —(1+vi)/¥i
v(p(p):_z 2[ 20+1} H

i=2 PyoCia Pofi0

. o v N[ (P—po) 2
Y(p, V) = p— poos’ 70—2,[‘—2——-{-1] .

i=2{ Pyfio

As V- and p— o, we obtain from (1.4) the equation of dynamic compressibility of the mediums:

5 : .
Vp Vi (p—po) | VW av
—17;*—*051‘{- Eai[_—z"_l—1] a(P(P)=PoE;- (1.5)

1=2 P10

As V—0 and p—0, we obtain the equation of static compressibility of the medium:

7 3 7, —_ ~4/v;
‘_s:Eai[lz_(Lz_@H] n (1.6)

P30%i0
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The last equation coincides with the equation of compressibility of the model of [2], not taking account of
bulk viscosity. The model of [2] corresponds to the limiting equilibrium state of the medium, which corre-
sponds to static compression in the model of [20].

We make use of Lagrange's variables: r is the space coordinate, t is the time.

We find the parameters of the wave produced by a load specified at the initial cross section r =0 of the
half-space (or a tube filled with the medium), increasing at t=0 by a jump to pg and retaining this value there-
after.

The fundamental equations of motion take the form

ﬂu 24 du_ 1 op 1,
=05 =0 Gt =0 a.m

The system (1.7), closing (1.4), is of hyperbolic type. The characteristic relations are
i/‘..

Po )1/2 du — o (p, V) dt for -

9(p) e (p) re (— 000 (P))

” i( 1.8)

_ b a (p, V)
dp e dV = 0% () dt for r—O

The characteristics of the first and second families are nonlinear.

The boundary conditions at the initial cross section r =0 and at the jump (the shock front), where the com-
pression takes place according to the dynamic diagram and there is no viscosity, have the form

p=pgfor t<0, p=pgfor t>>0,
P — po = puD, (p — p)D = pu.

The solution was carried out on the BESM-6 electronic computer for three load values pPs/Py=5000, 1000,
and 50, and for six media, whose characteristics are given in Table 1 [1-3) water-saturated soil; 4-6) water
with air bubbles].

In the calculations we assumed p 1y=1.29, pgy=10%, p3y=2.65"10% kg/m®, c;y =330, cyy=1500, c3y=5000 m/
sec, 'Y1=1.4, 'Y2=7, ')’3=4-

In the problem under consideration, in the r —t plane we have four types of points , at each of which the
parameters are calculated according to their appropriate algorithms: at the shock front, in regions of increas-
ing and constant pressure, and at the initial cross section.

We consider the sequence of calculation of the parameters in the region of increasing pressure. Suppose
that points A, B, D lie in the same time layer and that the parameters at these points are known, r(A)<r (B) <
r(D). We determine the parameters at point C, which lies in the next time layer and has the same space co-
ordinate as point B. The time step At varies from layer to layer. From point C on the preceding time layer
we draw the characteristics of all three families. Their intersections with the curve AD will be denoted by L,
B, M. The coordinates of points L and M are found from the equations

rL=rc —[— po® (PG At, rar = rc+1—pw (P)loa” A

The subscript CL indicates that the quantities in brackets are taken as the average of their values at
points C and L. In the first calculation the parameters at point C are taken to be the same as at point B. Using
interpolation with respect to the values of the parameters at points A, B, and D, we calculate the values of p, V,
and u at points L and M. After this, using the values we have found, we find more exact values for p, u, and v
at point C: ‘

_ _ . _ 1 '47(}7’ V)
pr=—I—pu/® (P)1¢7 (ue —ur) — ( 2 () )CLM’
e W e (9(p V)

Pe—pum [ ‘P(P)]CM (g - u¥) n ( @ (p) )CL‘At’
. - Po - & ‘b(l’v V)
. Pc—Psg <‘p (P))CB (Ve —Vs) m ( ¢ (p) )CB

The equations correspond to the relations satisfied along the three characteristics, The calculation is
repeated a prescribed number of times. The calculation of the parameters at other types of points is carried
out in the same way. '
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2. Results of the Numerical Solution. Figure 1 shows the diagrams of the dynamic compression V{)(%
and the static compression Vos(p") of medium 1 (see Table 1), constructed in accordance with Eqs. (1.5), (1.6).
Here and hereafter, p®=p/p,, V*=V/V,. For small pressures, when the compressibility of the medium is de-
termined by the compressibility of the air, the curves differ from each other congiderably. Starting with pres-
sures of the order of tens of atmospheres, the air is compressed to a state close to the limiting state and the
curves become similar to each other; the V“S(p“) diagram differs from the V§(p") diagram by «,.

The calculations show that at time t =0, when the load is applied, the shock front begins to advance from
the cross section r =0. The initial pressure at the shock front is p§=5- 103, and its velocity is D= (Y~ 1)py/
po(l—V?))]l/ 2, The value of the jump at the shock front and its velocity decrease with distance, Behind the
jump there follows a region of gradual increase of pressure to p%.

As time increases, the state at the shock front along the V?J(p") curve passes from point D to point M, and
at the initial cross section from point D te point S. In the region of increasing pressure the state is determined
by curves 1—w«. The increasing numbers correspond to increasing time. Curve 2 relates to the instant of time
at which the state at the initial cross section reaches the static-compression diagram. From the initial cross
section the front of the region of constant pressure p% begins to propagate itself with velocity Dg< Dg. With
increasing time, Dy decreases while Dg first increases and then decreases (see Fig. 1). As t— o, the diagram
of state in the region of increasing pressure approaches the straight line OMS, the pressure at the shock front
approaches p(I)VI’ and the velocity of the shock front and the front of the region of constant pressure and the
states between them approaches Dy ¢he flow becomes stationary)

Dy =[(p3 — 1) polo (1 — V)] 2.
We introduce the dimensionless distance
z = Ar/3v; (2.1)

_ [ _%aPso - OaPae \1/2 2 as Y2
4=( ) ( + ) 2.2)

—_ 2 1 2
l—a, P20c3g Pa0C3g

(A is the acoustic resistance of the medium surrounding the gas bubbles). The values of A calculated accord-
ing to (2.2} are shown in Table 2. Neglecting the mass of the air in comparison with the mass of the other com-
ponents, we obtain for small values of o,

—~1/2
A gty )T
Panfgo Paocéo

Figure 2 shows the distribution of the pressure for medium 1 when p% =5000. The variation of p'x) is
nearly linear. The length of the region of increasing pressure is Ax=6.8, p}y=p}/2. Assuming, in accordance
with [20], that  =1.09- 10% kg/m - sec, we obtain the dimensional length of the region of increasing pressure,
Ar =6.8-10~3 m, and the time of the increase at a fixed point of the medium, At=3.5-10-8 sec. The time of the
increase is quite short. '

The case we have considered, when the jump at the shock front decreases to a finite value, arises only at
a fairly large load, p%> pg. If the straight line OS (see Fig. 1) does not intersect the dynamic*diagram at even
one point, then the value of the jump at the shock front approaches zero in the limiting case; Pg is found from
the condition

ps—1=—clo,(Vs—1), Vs=vi(ps); 2.3)
—1 -
20, = —2 e , Copo~ A 2.4
CoPe (oncgo + Pso¢§0 ) oPo (2.4)

The values of pg calculated in accordance with (2.3), (2.4) are shown in Table 2.

*
As the percentage of the gaseous component increases, so does pg. In a water —air medium pg is less
than in a water-saturated soil for the same value of ;. The velocity of the shock front approaches the velocity
of sound ¢;,. For the first medium ¢;=1640 m/sec.

The variation of the pressure at the shock front as a function of the distance in water-saturated soils for
p§= 1000 < pg is shown in Fig. 3, where the numbering of the curves corresponds to the numbering of the media
in Table 1. '
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Curve I, defines the distribution of pressure in medium 1 when the shock front reaches the point x=303.
The pressure at the shock front is practically equal to zero. The length of the region of increasing pressure is
Ax=83, For 7=1.09-10°kg/m-sec we obtain r =30.3-1072 m, Ar=8.3"10"2 m. The time of increase of the
pressure to the maximum, At =5-1075 sec, is still small. As p{ decreases, the length of the region of increas-
ing pressure increases. As the percentage of the gaseous component increases, so does the intensity of ex-
tinction at the shock front. g

Figure 4 shows the diagrams for the dynamic compression V§(p%) and static compression V&% of
water with gas bubbles (medium 4); curves 1—« define the variation of the state in the particles of the medium
as the pressure increases. The numbering increases with the distance of the particles from the initial cross
section. The curves approach the straight line OS.

Figure 5 shows how pressure at the shock front varies with the distance in a water —air medium for p°S=
50. The numbering of the curves corresponds to the numbering of the media in Table 1. The pressure af the
shock front approaches zero. Curve L defines the distribution of pressure in medium 4 when the shock front
reaches x=398.

3. Approximate Values of the Coefficient of Viscosity. The solutions of wave problems [20] have shown
that the bulk viscosity leads to a blurring of the shock wave. The values of the coefficient of bulk viscosity 7
must be determined experimentally. Let us find the approximate values of 7 from an analysis of the compres-
sion of the bubbles, taking the equations of compressibility of the solid and liquid components to be linear. Sup-
pose that all the bubbles are sphericgl in shape and have the same radius r;. The initial volume of a bubble is
Vy =4rr}/3. For compression at the time the load is applied,

J 2
 V*=—4nrryu,

where u is the veloeity of the medium surrounding the bubbles. The variation of the volume of all the bubbles
in a unit volume of the medium is given by

From (1.3) it follows that at this instant of time
D — Do = —T.IV1/V10 = 3nu/r,. 3.1

If the solid and liquid components are linear-elastic media, i.e., ¥3=Yy3=—1, then

+ ®3030 \1/2 %y ay V2 3.2)
p—p =Au,A=(““p” ) . + ) (3.
° ta) s e

From a comparison of (3.1), (3.2) we find the coefficient of viscosity
N = Ar/3. 3.3

The values of 1 for r0=10'3 m, calculated according to (3.3), are shown in Table 2. For the types of
variation of a; we have considered, the values of A and 7 vary only slightly.

In water-saturated soil A and 7 are higher than in a water—air medium for the same air content and the
same bubble radii.

Variation of the gaseous-component leads to a variation in the static and dynamic diagrams, while varia-
tion of the bubble radius changes the coefficient of viscosity of the medium.

From (2.1), (3.3) it follows that
== 7;/7'0.

In Fig. 6, curves 1-4 define the pressure at the shock front for p‘é:so, 500, 1000, and 3000, respectively.
They were constructed for water-saturated soil, but they practically coincide with the curves for water witli
air bubbles. The difference between the curves is no more than 10%. From this it follows that when p% <pg, We
can assume as a first approximation that

p°/ps = f (raalry).
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4. Analytic Solutions. We consider the case pos < pg. We approximate the dynamic-compression diagram
by the straight line OD (see Fig. 4). In the linearization the characteristics are straight lines, the curve of the
front coincides with the characteristic of the first family, and the parameters at the shock front correspond to
the first equation in (1.8). The function ¥ (p, V) can be represented in the form S

Y (0, V) = p— po[t — (Vb — VO)jor, | 7™ (4.1)

As V'—V}) and V"~ VY, respectively, we have § —p ~ py and 3 —0. On the dynamic-compression diagram,
and consequently at the ]ump as well, we have Y =p~DPy= po(p" 1). In accordance with (1.5), for the lineariza-
tion we obtain '

@ (p) = pdVidp, @ (p) = (1—Vp)ip,(1 — p§) = const.
The relation at the jump is
p = (—dp/dV)'/*u = (—po/@(p))/*u.
Hence the first equation in (1.8) takes the form
dp®/ (p° — 1) = — azp, (p§ — /m(1 — V) ds.

Integrating for the initial condition p}=p®(0), we obtain the variation of the pressure at the shock front as a
function of time:

ln[(p" - 1)/(Pg — 1)] == 01l (Pg - 1) t/2n(1 — V%)-
The equation of motion of the shock front is
r== [po (Pg — 1)/(1 - V%)Po]i/zt'

The variation of the pressure at the shock front as a function of distance is given by
In[(p" — 1) (p} — 1)1 = — &, [(p& — 1) pepo]'"* ri2n (1 — VB)'™ ' (4.2)

In Fig. 3 and Fig. 5 the indicated points correspond to the pressure at the shock front as calculated ac-
cording to (4.2). The analytic solution for the linearization of the dynamic-compression diagram is close to
the solution obtained by electronic computer without linearization (curves 1-6). The reason for this is that the
dynamic-compression diagram deviates little from a linear function (see Figs. 1 and 4) in the media under con-
sideration.

We consider the variation of the pressure at a fixed point of the medlllm when pS < p For t =0 the third
equation in (1.8) is satisfied. After the jump at the shock front up to p the state at a partlcle changes accord-
ing to curves 1—w (see Fig. 4). For linearization of these curves and of the dynamic-compression diagram we
obtain

av vi—V} 1—7h

a (pg—p}’)popo' v (r)= T n(d 1) “.3)

where pf is the pressure at the jump; Vi=V (ps) V° =VH®Y.

Between the dynamic and static diagrams, except for a small region near the static curve, we can ap-
proximately assume [see (4.1)] the condition y =p-py. From this, taking account of (4.3), we obtain the third
equation in (1.8) in the form

dp/(p°— 1) = a;, (p§— p}) Py (VE — V) dt.

Integrating, we find the variation of the pressure at a fixed point of the medium (a particle) behind the
shock front

In[(p° — 1) (p} — 1)] = 0 (P& — pY) Po/n (VE — VD) (t — 1) (4.4)
(t; is the time when the shock front arrives at the point under consideration).
The time during which the pressure increases to p% is
At =1n[(p8 — /(5 — )] n (VB — Vb)/ ar (8 — pf).
For values of p§ that are not too small, we may assume oy =V~ V§,.
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In Fig. 7, curve f corresponds to the variation of pressure at the shock front with time in water with gas

bubbles when ¢;=0.01 and p{=50. Curves 1-6 show the variation of pressure at fixed points of the medium at
distances x=25, 50, 100, 150, 200, and 400, respectively. The solid curves are obtained by computer calcula~
tions, while the dashed curves are obtained by (4.4). The_ differences between them are slight.

The analytic expressions obtained can be used for the approximate determination of the pressure at the

shock front and its variation during the time the pressure increases to’p"s, as well as for determining the time

of pressure increase.

10.

11.
12.

13.
14.
15.
16.

17.

18.

19.
20.

21.

22.
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